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Abstract
Shape Signatures is a new computational tool that is being evaluated for applications in computational
toxicology and drug discovery. The method employs a customized ray-tracing algorithm to explore
the volume enclosed by the surface of a molecule and then uses the output to construct compact
histograms (i.e., signatures) that encode for molecular shape and polarity. In the present study, we
extend the application of the Shape Signatures methodology to the domain of computational models
for cardiotoxicity. The Shape Signatures method is used to generate molecular descriptors that are
then utilized with widely used classification techniques such as k nearest neighbors (k-NN), support
vector machines (SVM), and Kohonen self-organizing maps (SOM). The performances of these
approaches were assessed by applying them to a data set of compounds with varying affinity toward
the 5-HT2B receptor as well as a set of human ether-a-go-go-related gene (hERG) potassium channel
inhibitors. Our classification models for 5-HT2B represented the first attempt at global computational
models for this receptor and exhibited average accuracies in the range of 73−83%. This level of
performance is comparable to using commercially available molecular descriptors. The overall
accuracy of the hERG Shape Signatures–SVM models was 69−73%, in line with other computational
models published to date. Our data indicate that Shape Signatures descriptors can be used with SVM
and Kohonen SOM and perform better in classification problems related to the analysis of highly
clustered and heterogeneous property spaces. Such models may have utility for predicting the
potential for cardiotoxicity in drug discovery mediated by the 5-HT2B receptor and hERG.

Introduction
The heart is a highly complex structure that ensures the survival of the organism. Consequently,
xenobiotic-mediated interference with its role in homeostasis can have catastrophic effects
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manifesting in cardiotoxicity. For example, interference with ion homeostasis by channel (1)
or exchanger blockade (2), altered coronary blood flow, oxidative stress, organellar dys-
function, and apoptosis are all potential mechanisms of cardiotoxicity (3). Two different
proteins, namely, the 5-HT2B receptor and the human ether-a-go-go-related gene (hERG)1
potassium channel, have raised particular concern primarily due to their association with
cardiac valve disease or potassium channel blockade, respectively. Unintended activity at these
two proteins independently by several drugs resulting in toxicity has prompted their withdrawal
from the market by the FDA. An area of considerable interest in drug discovery research is the
computational modeling of toxicity-related proteins to identify such potential problems as early
as possible (4), especially as currently there are no X-ray structures for these proteins.

Serotonin is found in many physiological systems from the central nervous system to the
intestinal wall and, in concert with its many receptors, plays a major regulatory function in
cardiovascular morphogenesis. The 5-HT2 receptor family of G-protein-coupled receptors
including 5-HT2B is expressed in cardiovascular, gut, and brain tissues as well as human
carcinoid tumors (5). In recent years, this receptor has been implicated in valvular heart disease
defects, caused by the now FDA-banned “fen-phen” and pergolide (6-9). The primary
fenfluramine metabolite, norfenfluramine, potently stimulates 5-HT2B (10,11). Computational
modeling of this receptor has been very limited to date but is urgently needed to proactively
identify drugs that may bind this receptor.

Numerous classes of drugs have been shown to prolong the QT interval, which reflects a
slowing of repolarization of the ventricular myocardium (12,13), where excessive prolongation
can lead to the potentially life-threatening ventricular tachyarrhythmia, torsade de pointes. In
cardiac tissue, inhibition of potassium channels is associated with QT interval prolongation
(14,15). The most common potassium channel linked to drug-induced QT interval prolongation
is also responsible for the rapid component of the delayed rectifier potassium current (IKr). The
focus of considerable research is hERG, which is believed to encode the protein that underlies
the delayed rectifier potassium current IKr (16,17), and many drugs associated with QT interval
prolongation have been found to block hERG (18-20). Several drugs have been withdrawn
from the market in the past decade due to cardiovascular toxicity associated with undesirable
blockade of this channel. Since 2002, there have been numerous studies that have described
individual three-dimensional (3D) quantitative structure–activity relationship (QSAR) models,
statistical models, or pharmacophores for hERG (21-34). These different studies and others
have encompassed a wide set of data generation and modeling techniques as well as an array
of molecules for model building and testing as recently reviewed (35). There are some gross
similarities in the suggested requirements for hERG inhibitors, namely, the requirement for
hydrophobic features surrounding a positive ionizable/basic nitrogen feature. However,
depending on the molecules and techniques used for model building, the pharmacophore or
descriptors suggested may vary widely.

The focus to date has been primarily on individual hERG models of a “global” nature consisting
of structurally diverse molecules across therapeutic targets (antipsychotics, antihista-mines,
antibiotics, etc.) although “local” models have also been generated around narrow structural
series (24). These ligand-based computational models, along with a growing number of
homology models (36,37), have provided insights that complement experimental studies such
as site-directed mutagenesis (38,39). We recently illustrated for the first time the comparison
of multiple modeling approaches including Kohonen maps, Sammon maps, and recursive
partitioning with the same training set, to assess whether one or a combination of approaches

1Abbreviations: CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity analysis; hERG, human
ether-a-go-go-related gene; k-NN, k-nearest neighbors; QSAR, quantitative structure–activity relationship; SOM, self-organizing maps;
SVM, support vector machines; UFS, unsupervised forward selection.

Chekmarev et al. Page 2

Chem Res Toxicol. Author manuscript; available in PMC 2009 October 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is preferable (40). All hERG models were assessed with a sizable external data set of published
molecules and exhibited good predictivity. In addition, it was found that a structural similarity
measure provides a valuable means to limit extrapolations far beyond the training set of the
quantitative recursive partitioning model. The descriptors selected for the qualitative mapping
methods provide further insight into the structural features of hERG inhibitors when compared
with those generated by other available methods, suggesting that molecular shape or
topological characteristics are also important for hERG inhibitors. Drugs for noncardiovascular
indications that interact with either 5-HT2B or hERG are undesirable. Although there has been
considerable modeling of hERG within pharmaceutical companies and less so for 5-HT2B,
there is an unmet need for a computational platform that focuses on identifying molecules that
bind to either of these proteins with affinity that may be clinically significant.

A new approach has recently been proposed that utilizes molecular shape-dependent signatures
as the basis for molecular recognition (41). The Shape Signatures method employs a
customized ray-tracing algorithm to explore the volume enclosed by the surface of a molecule,
then uses the output to construct compact histograms (“shape signatures”) that encode for
molecular shape, polarity, and other biorelevant properties (Figures 1 and 2). The method has
already proven successful for a number of drug discovery programs when used for database
similarity searching (41-45) and has several advantages over other approaches (Table 1). The
goals of the present study were to extend the Shape Signatures tool into the domain of
toxicology modeling. More specifically, we demonstrate that Shape Signatures can be
employed to generate ensembles of 3D molecular descriptors useful for classifying compounds
with respect to their experimentally tested activity at the 5-HT2B receptor and the hERG
channel. These models were also tested against more traditional classification models with
two-dimensional (2D) molecular descriptors. Our aim is to develop practical and accessible
models that reliably predict whether a molecule is likely to exhibit cardiotoxicity mediated via
these two proteins.

Experimental Procedures
Data Acquisition

A database of >130 unique molecules was assembled for which patch clamp data for the hERG
channel were available (40). Following the analysis of Ekins and co-workers, we selected 39
strong binders (IC50 < 1μM) and 44 weak binders (IC50 > 10μM) (40). In the case of 5-
HT2B, the recent annotation of a database of binding information (Ki) for receptors
(http://kidb.cwru.edu/) provided 182 molecules with documented binding properties (46).
Among them, 116 compounds with Ki ≤ 100 nM were designated “active”, while 66 other
compounds with low affinity (Ki ≥ 1μM) were “nonactive”. The full lists of compounds for
each target class are available in the Supporting Information. The associated libraries of Shape
Signatures required for classification were generated using the procedure outlined below.

Shape Signatures Method
In the Shape Signatures method, 3D molecular features, such as overall molecular shape and
distribution of charges, are encoded in the form of the 1D and 2D dimensional histograms. The
structure-related properties are regarded as key indicators of ligand–receptor molecular
recognition and, thus, to the relative biological activity of the compound. These histogram-
based fingerprints (“signatures”) have been used to compare the query molecule with other
druglike compounds from precomputed databases. Shape similarity between the two molecules
is then assessed by comparing their 1D signatures (Figures 1b and 2b). Matching the 2D
signatures of the two compounds compares their overall molecular shapes and molecular
electrostatic potentials (MEP) (Figures 1c and 2c). The closest matches are retrieved for further
analysis. The process is fast and efficient, and the method benefits from its ability to capture
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the true 3D structure of the molecules without atom-based alignment of the molecules (43,
44).

A detailed description of the Shape Signatures technique can be found in the original
publication (41), and we only briefly highlight the major steps of the algorithm. These
descriptors are similar to the PEST shape/property descriptors described previously by
Breneman et al. (47,48). The procedure starts by generating a 3D structure of the molecule
under investigation using CORINA (developed by J. Gasteiger et al., Molecular Networks
GmbH, Nägelsbachstrasse 25, 91052 Erlangen, Germany; http://www.molnet.de), followed by
computing partial charges for each atom using the Gasteiger–Marsili scheme (49). A solvent-
accessible surface (SAS) is then constructed around the molecule, and the triangulated
representation of this surface is subsequently generated by the SMART algorithm (50). Next,
the ray-tracing process is initiated inside the cavity bound by the SAS, which encompasses the
molecule. The ray is propagated from a randomly chosen point on the interior lining of the
molecular compartment. As it strikes the opposite side, it is reflected and propagates in the
direction determined by the law of optical reflection. As the ray bounces back and forth inside
the enclosed molecular compartment, it generates a path composed of a number of straight line
segments joined by the reflection points. For each reflection point, two quantities are calculated
and stored in memory: the value of the truncated Coulomb potential at this geometric point
created by the nearest atomic charges and the combined length of the incident and reflected
ray segments. Given a sufficient number of reflections (100000 in this study), the trajectory of
the ray will eventually explore the entire volume of the molecule. To prevent trapping of light
inside some tight and unusually shaped parts of the molecular compartment, the ray-tracing
procedure is periodically stopped and reinitiated from a different randomly selected point on
the inner surface. At the end of the run, all recorded ray segments are binned by their length
in a 1D histogram with the predefined bin width of 0.5 Å (Figures 1b and 2b). Simultaneously,
a second histogram is also constructed; this one bins records by values of the MEP with a step
of 0.05 e/Å and the associated total length of the two path segments joined by the reflection
point, resulting in a 2D histogram (41) (Figures 1c and 2c). Both histograms are properly
normalized. The first histogram encodes exclusively for the shape characteristics of the
molecule (it represents the probability distribution of finding a ray segment of a particular
length inside the SAS surrounding the molecule), whereas the second histogram reflects both
the molecular shape and the 3D arrangement of atomic charges in this molecule (it expresses
a joint probability distribution of finding a particular value of MEP with a certain length of the
two ray segments connected by the reflection point). Once calculated, the resultant Shape
Signatures fingerprints can be employed in a variety of problems in drug discovery and
computational toxicology, which require matching chemical structures based on their shapes
and polarities.

Shape Signatures Molecular Descriptors
For every molecule in this study, the heights of the corresponding normalized 1D and 2D shape
signature bins comprise the sets of distinct molecular descriptors related to this particular
structure. Consequently, each chemical has two sets of continuous descriptors: one based
exclusively on molecular shape and the other reflecting both molecular shape and polarity. It
is important to emphasize that although these features are pieces of 1D and 2D shape signatures,
they are inherently 3D molecular descriptors since they encode for the 3D arrangements of
atoms and atomic charges in a molecule. We also note that for all classification runs based
solely on Shape Signatures, no additional descriptors were appended to the input Shape
Signatures data vectors. As will be discussed later in the text, a mixed descriptor scheme with
some combination of the traditional commercially available 2D descriptors [e.g., those in
Molecular Operating Environment (MOE), Montreal, Canada: Chemical Computing Group
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Inc.] and the Shape Signatures-derived 3D descriptors seems an interesting continuation of the
reported analysis in the future.

As a preliminary test, we used the suggested descriptor allocation scheme to cluster 22 bioactive
compounds from our in-house libraries. The set included 10 nuclear receptor (five estrogen
receptor and five androgen receptor) binders, five Pfmrk kinase inhibitors, and seven tubulin
ligands. Clustering was based on molecular shape captured by the 1D Shape Signatures
histograms, used simple Euclidean distances as similarity scores, and was performed by
constructing and analyzing Kohonen self-organizing maps (SOM) (51). The results obtained
(data not shown) indicated that structures from different target families occupied distinct
regions of the SOM, and with only two clear misclassifications for the 22 molecules. These
misclassifications were genistein [a frequent hitter (52-54)] and raloxifene, which was
observed to lie closer to the androgen receptor molecules rather than the estrogen receptor
compounds (55). Encouraged by these preliminary findings, we decided to build classification
models for the 5-HT2B receptor and hERG potassium channel data sets.

Classification Procedures
We have investigated descriptors derived from the Shape Signatures representations using
different classifier algorithms. For a simple classifier, we chose the k-nearest neighbors (k-NN)
algorithm (56), which is very easy to implement. Despite its simplicity, this method has been
shown to produce acceptable results for many applications (57-59). In this method, each query
molecule from a given test set is compared in turn with all compounds in the training data set
with known class affiliations, and similarity scores are calculated for every pair. The
comparison is made between the corresponding 1D and 2D shape signatures of the two
molecules, and we utilize the χ-square measure (56), widely employed for comparing discrete
distributions, to compute similarity scores. At the end of each run, the entire training set is rank
ordered with those more similar (to the query) structures being placed at the top of the list. The
decision on which class a given query structure shall belong to is made based on a majority
vote of its k nearest, that is, k most similar, neighbors. For highly unbalanced data sets, the
weights of the neighbors are adjusted according to their class prior probabilities. For an
unbalanced data set, k-NN with a straightforward majority vote will favor assignment to the
larger of the two classes as the size of the NN list grows. To avoid such a situation, we need
to adjust the majority vote rule accordingly (or equivalently assign different weights to
molecules on the NN list belonging to different classes). It is therefore customary to vary k
within some range, depending on the size of the training set, in search of the value with
maximum prediction accuracy.

The support vector machine (SVM) method, based on the principle of structural risk
minimization (60,61), is a relatively recent addition to the family of supervised classification
methods [discussed in detail in a recent book chapter (62)]. This technique has already gained
recognition as one of the most robust and efficient classifiers (21,56-58,63). It can tackle
nontrivial problems by projecting the original descriptor vectors to a higher dimensional feature
space where a clearer division between the two classes of data becomes feasible. In such a
high-dimensional feature space, a linear SVM routine is applied next to optimally position the
separating hyperplane between the instances from the two classes (62). Minimization of the
expected generalization error for the test data sets is achieved by finding a separating
hyperplane with the maximal margin. Computationally, the transformation into a higher
dimensional feature space is implicit as only the distances between the pairs of the transformed
data are needed for training and these are computed using the predefined kernel functions K,
the associated parameters for K, and the original input descriptor vectors. As such, this approach
is less likely to suffer from “data overfitting” and can successfully handle situations involving
hundreds or many thousands of descriptors. We used a well-tested and freely available program
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LIBSVM (C-SVM) (64). We worked with the radial basis function kernel, whose parameter
γ and the penalty term C were determined in each case via a grid search procedure utilizing 5-
fold cross-validations.

The data sets ultimately used in this study included 83 chemicals for the hERG potassium
channel and 182 chemicals for 5-HT2B receptor. For each of these data sets, a pair of 1D and
2D shape signatures was constructed according to the procedure detailed above. There are on
average about 20−60 nonzero bins/descriptors for the 1D (shape only) Shape Signatures
histograms. For the 2D histograms (shape and polarity), this number is significantly higher,
on the order of several hundred. Consequently, to avoid overfitting in the latter case, we applied
the unsupervised forward selection (UFS) method of Livingstone and co-workers (65) to reduce
the dimensionality of the problem. The UFS scheme, which was designed to eliminate
redundancy and diminish multicollinearity of the input data, has been demonstrated to be fairly
successful for a number of QSAR studies (65). The algorithm consists of two major steps.
While processing the original descriptor data matrix (responses are not included), the routine
first excludes descriptor columns with small standard deviations (ε < εmin) as contributing no
significant information. It then analyzes the reduced data matrix, selects two least correlated
descriptor columns, and rejects those with high pairwise correlation coefficients (R2 >
Rmax

2). The list of the selected descriptors is augmented by the column that has the smallest
squared multiple correlation coefficient. This step is performed repeatedly, producing a
growing list of nominated descriptor columns, which survive the rejection filter based on the
squared multiple correlation coefficient with the columns picked in the previous step. The
procedure stops when the list of columns is fully exhausted. For our experiments, we used the
code available from Whitley et al. (65), with the default parameter settings for εmin and
Rmax

2 as 0.0005 and 0.99, respectively.

Neural Network Modeling Using Self-Organizing Kohonen Maps
As we have described previously (40,66), the general idea behind Kohonen maps (51) is to
map a set of vectorial samples onto a 2D lattice in a manner that preserves the topology of the
original space. Kohonen maps belong to a class of neural networks known as competitive
learning or self-organizing networks. The Kohonen map consists of artificial neurons that are
characterized by weight vectors with the same dimensionality as the descriptor set. The neurons
are connected by a distance-dependent function. In an unsupervised training algorithm, the
neurons self-organize until their pairwise neighborhoods represent the correct topology of the
original data set. Kohonen maps have recently been applied to successfully model cytochrome
P450-mediated drug metabolism (67,68) and hERG inhibition (40). The generation of the
Kohonen SOMs (51) was conducted using the Smart Mining software v1.01 (ChemDiv, Inc.,
San Diego, CA, www.chemosoft.com). A 7 × 7 node architecture was chosen to provide the
studied molecules with the optimal distribution space. The 5-HT2B data set included 140
compounds (77% of the entire database) denoted as a “training” set (89 active and 51 nonactive)
and 42 compounds (23% of the entire database) denoted as a “test” set (27 active and 15
nonactive). In total, 182 compounds (100%) were used for generation and validation of the
SOMs. Similar to the SVM analysis, Kohonen networks were constructed using 102 2D Shape
Signatures descriptors computed for each molecule in the set. The training parameters for the
SOM were as follows: The classical algorithm based on the incremental learning method was
applied for generation of the Kohonen maps, the neurons were studied using the normal
distribution law encoded by the Gaussian probability function, the initial distribution of
synaptic weights was randomly assigned, the number of interactions for the training runs was
3000, the starting adjustment radius for the training runs was 4, and the initial learning rate
factor was 0.5. We have used 30 randomizations of the input training set for the Kohonen map
generation. After the SOMs were generated, we studied the distribution of active and nonactive
compounds within the best mapping. The resulting maps are shown in Figure 3.
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Model Testing
To carefully evaluate the performance of each Shape Signatures/classifier combination applied
to the hERG or 5-HT2B data, three different types of statistical testing were undertaken. For
the Shape Signatures paired with the SVM approach, we conducted straightforward 10-fold
cross-validations on the entire data sets and subjected the systems to a series of leave-N-out
runs. The leave-N-out tests were designed as follows. For either target, N compounds from the
original data set were randomly picked to represent the hold-out test set, and the rest of the
data constituted the training set for this particular data partition. The selection was carried out
to approximately preserve the correct proportion of active and nonactive structures in both sets.
In particular, for hERG, N = 20 (24% of the data set) with 10 active and 10 nonactive, and for
5-HT2B, N = 42 (23% of the data set) including 27 active and 15 nonactive molecules. Each
classification algorithm was then trained on the training set and applied to predict class
attributes of the compounds in the test set. Next, a set of statistical indicators of prediction
accuracy were computed and stored. To obtain better statistical estimates, the described
procedure was repeated 30 times, each time with a different composition of the test and training
sets. For each target, the reported final statistical measures were averaged over the indicated
number of repetitions.

Model Statistics
A broad spectrum of statistical indicators is available for assessing the performance of a given
classification model (56). In this study, we report the most commonly encountered measures
for estimating prediction accuracy of a classifier: sensitivity (SE), specificity (SP), and overall
accuracy (Q). These quantities are defined in terms of the numbers of true positives (tp) and
false positives (fp), indicating strong binders to either hERG or 5-HT2B in our case, and the
numbers of true negatives (tn) and false negatives (fn), that is, presumably nonactive
compounds. Sensitivity, SE = tp/(tp + fn), then expresses the prediction accuracy for molecules
with high affinity to the considered targets, whereas specificity reflects the prediction accuracy
for weak binders: SP = tn/(tn + fp). We also tabulate the overall prediction accuracy defined
as Q = (tp + tn)/(tp + fp + tn + fn). In addition, following Ung et al. (58), we report the values
of Matthew's correlation coefficient (69) C = [tp × tn - fp × fn]/[(tp + fn)(tp + fp)(tn + fp)(tn
+ fn)]1/2, which is another measure of the overall prediction performance. This indicator has
interesting properties: For a perfect classifier (fp = fn = 0), C ) 1.0, while for random
performance (resulting in tp ≈ fp and tn ≈ fn on average), C ≈ 0. A negative value C would
imply worse than random performance.

Results
hERG Models

An initial evaluation of the Shape Signatures descriptors was performed with the hERG data
set. The results of various classification schemes applied to discriminate between strong and
weak blockers of hERG are summarized in Table 2. All of the reported models perform
substantially better than random. The UFS-SVM model with shape and charge descriptors
appears to perform slightly better than the k-NN models. The average prediction accuracy for
the external test sets varies from 66 to 74%, which is comparable to the 70−85% established
by summarizing the results of other predictive modeling studies of hERG reported in the
literature (35).

5-HT2B Models
Our evaluation of the 5-HT2B data is shown in Table 3. As a direct comparison with Shape
Signatures descriptors, we have used a set of 184 2D molecular descriptors available in MOE.
The initial data matrix for these descriptors was also processed by the UFS algorithm (described
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above), and the resulting ensemble of 73 2D MOE descriptors was used for final calculations.
Both of the UFS-SVM models with Shape Signatures or MOE descriptors perform similarly
in terms of model statistics resulting in prediction accuracies of 87% after 10-fold cross-
validation (Table 3). We have also used UFS with SOM and the Shape Signatures descriptors.
Among 30 randomizations used in the SOM, the average percentage of correctly predicted
compounds belonging to both classes included in the training set was 85% for active
compounds and 86% for nonactive compounds. The average percentage of correctly predicted
compounds from the test set was 78% for active compounds and 54% for nonactive compounds.
On average, 5% of the tested compounds were assigned to the “unclassified” class. The ratio
of correctly predicted compounds from both tested groups (active and nonactive) was in general
well-balanced for the training sets (Figure 4a). At the same time, a clear bias toward better
prediction accuracy for active structures was observed for the internal test sets (Figure 4b).
One possible reason for such bias is an increased dissimilarity and smaller number of nonactive
compounds in the training set as compared to active compounds. Therefore, the training results
are statistically less significant for the nonactive subset.

Discussion
Computational Methods

Several ligand-based and structure-based computational methods exist that implicitly or
explicitly include some representation of molecular shape. The program UCSF DOCK (70,
71) packs spheres into a protein receptor site; candidate ligands can then be evaluated for shape
compatibility with the site by checking for containment within the array of spheres.
Comparative molecular field analysis (72) (CoMFA) represents the shape of molecules
implicitly by mapping steric and electrostatic fields on a 3D grid that surrounds the molecule;
biological activity is then correlated with variations of the fields at the grid points. Essentially
all automated docking programs implicitly represent molecular shape via some form of energy
calculations. Inasmuch as shape is directly related to molecular structure, tools that employ
pharmacophore models (e.g., Catalyst, UNITY, etc.) represent molecular shape via interatomic
distance constraints. The aforementioned shape-based methods, although invaluable, demand
considerable computation involving either energy or distance–geometry calculations.
Moreover, the matching of a compound to a receptor site or pharmacophore model typically
involves some sort of simulation (genetic algorithm, Monte Carlo method, etc.) for generating
orientations and configurations of the ligand. CoMFA requires manual alignment of the series
of molecules, a highly subjective process that effectively limits the number of compounds to
≈150. When the goal is to screen large vendor or legacy databases of compounds, such methods
may lead to prohibitive computational costs. What is needed is a method that can rapidly
compare shapes of large databases of compounds to each other, or to a receptor site, with a
minimum of computation, without requiring explicit 3D representation of shape and without
actual ligand–receptor docking. This is just the sort of method embodied in Shape Signatures
descriptors used for QSAR, which has several advantages over traditional molecular
descriptor-based QSAR methods (Table 1).

hERG Models
While there have been many models for this potassium channel, our goal in this study was to
use hERG as a test case to evaluate Shape Signatures descriptors with different classifier
algorithms. A qualitative comparison of our hERG results with those extracted from other
studies reported to date (35) suggests that the differences may be insignificant. Overall, in this
study, the prediction accuracies of SVM based methods outperform the k-NN models. Although
k-NN models yield better selectivity rates, this is achieved at the expense of much lower
specificity values. In particular, k-NN classifiers suffer from a large number of false positive
predictions and, thus, are less selective than the procedures that use SVM. We found that
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regardless of the classifier employed, the models based on the 2D Shape Signatures (shape and
charge) are slightly more accurate than those derived from the 1D signatures (shape). This
implies that for better selectivity, one may need to incorporate the polarity of the molecules
into the model. This observation is consistent with the notion that the hERG channel can
accommodate inhibitors of different size and shape. This may also relate to the position of the
basic N atom found in many hERG inhibitors and suggested to be important in many of the
published pharmacophores. Ekins et al. previously used a single external set of 21 compounds
(seven active and 14 nonactive) to test their classification models based on Kohonen and
Sammon mapping techniques (40). For Kohonen SOM, they obtained SE = 86%, SP = 79%,
and Q = 81%, and for Sammon mapping, they reported SE = 86%, SP = 100%, and Q = 95%.
These results are better than the average values obtained over the series of 30 leave-20-out
experiments tabulated in Table 2. However, if we turn to some of the best-performing UFS-
SVM models in our study, these models yield SE = 80−90%, SP = 80−100%, and Q = 85−95%,
which is comparable to the Sammon mapping model previously described (40).

5-HT2B Models
Our results with the 5-HT2B classification models are the major focus of this study and are the
first classification models for this receptor to be reported to date. Previous computational
modeling of 5-HT2B has encompassed a traditional QSAR study, which used a small number
of tetrahydro-β-carboline derivatives as antagonists with the rat 5-HT2B contractile receptor
in the rat stomach fundus (73). A 3D QSAR with GRID-GOLPE using 38 (aminoalkyl)benzo
and heterocycloalkanones as antagonists of the human receptor resulted in poor model statistics
possibly due to the limited range of activity measured and the complexity of the functional
response (74). Homology models based on the bacteriorhodopsin as well as rhodopsin X-ray
structures have been used for the mouse and human 5-HT2B receptor and combined with site-
directed mutagenesis. The models based on bacteriorhodopsin proved more reliable and
confirmed an aromatic box hypothesis for ligand interaction along transmembrane domains 3,
6, and 7 with serotonin (75). A more recent 5-HT2B homology model with the rhodopsin-based
model of the rat 5-HT2A together with molecular dynamics simulations was used to determine
the sites of interaction for norfenfluramine. Site-directed mutagenesis showed that Val 2.53
was implicated in high affinity binding through van der Waals interactions and the ligand
methyl groups (76).

We have found in this study that, similar to the hERG modeling described previously, for 5-
HT2B, SVM generally outperforms k-NN methods (Table 3). Interestingly, the same
observation has been documented in a number of classification studies across different classes
of protein targets (57,58). In comparison to the results with the hERG data set (Table 2), for
5-HT2B, we were able to achieve generally better overall prediction accuracies for the test sets
within the range of 72−84%. Among the models based on Shape Signatures descriptors, the
UFS-SVM procedure is again the best. On average, these models compare well with SVM
classifications paired with the traditional 2D molecular descriptors computed with MOE. This
observation further validates the applicability of the Shape Signatures-derived molecular
descriptors. The 2D Shape Signatures classifiers appear superior to the models based on the
1D histograms, indicating that molecular polarity is likely necessary for generating more
accurate predictions for 5-HT2B.

The results presented in Table 3 also demonstrate that the prediction accuracies achieved in
the Kohonen modeling experiments (86% prediction accuracy estimated from 10-fold cross-
validations), in general, were similar to those observed in the best UFS-SVM models (87%)
and better than in k-NN models (74%), when the same 102 “shape + charges” descriptors were
used. The iterative methods based on vector quantization algorithms, such as SVM and
Kohonen SOM, perform better in classification tasks related to analysis of highly clustered and
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heterogeneous property spaces. Classification results certainly vary from one classifier to
another, but if several different classification models using the same collection of molecular
descriptors produce consistent results, it would certainly add to the credibility of the utilized
descriptor set. We found that the average statistics produced for either hERG or 5-HT2B by k-
NN, SVM, and SOM models are generally consistent overall, indicating that the Shape
Signatures histograms constitute a useful set of new molecular descriptors for these types of
classification problems. Their utility likely also rests in their ability to reliably capture the shape
and charge requirements for molecules to fit to these proteins.

To further investigate the utility of the shape signatures-based molecular descriptors, we
evaluated the SVM and SOM models with an additional external test set (77). This set included
20 compounds with documented activities toward 5-HT2B: six active and 14 nonactive
molecules. We attempted to classify compounds in this data set using models built on the
original data set of 182 5-HT2B molecules, which are described in Table 3. As before, all
calculations were performed using the set of 102 2D Shape Signatures descriptors. The best
UFS-SVM and SOM models yielded SE = 33%, SP = 71%, and Q = 60%. This prediction
accuracy is lower than the corresponding values reported in Table 3 for the original data set,
especially for the SVM models. The reason for this may be 2-fold. First, with the current
settings, Shape Signatures may not perform well in separating close structural analogues in an
external test set. However, the use of alternative descriptors, such as the electrotopological
indices (calculated using the SmartMining program), led to similar prediction accuracy on the
same test set. Second, and probably the most important point to consider, is that the compounds
in the external test set may lie outside the chemical space occupied by the structures from the
original 182 molecules data set. Indeed, similarity measures in the form of Euclidean distances,
calculated using the ChemoSoft software between pairs of molecules, suggest significant
structural differences between the original data set (182 structures) and the external test set
(data not shown).

A major objective of the reported study was to thoroughly examine the quality of a novel set
of molecular descriptors derived from the associated molecular Shape Signatures previously
used as a virtual screening tool for drug discovery (41-45). These descriptors are inherently
3D and fundamentally different from other 2D/3D descriptor collections normally used in
predictive QSAR modeling (1,78). We have therefore extended the Shape Signatures
methodology in the form of molecular classifiers for computational toxicology. Practical
classification models for the 5-HT2B receptor and the hERG potassium channel have been
constructed and validated. Our classification models for 5-HT2B offer the potential to predict
cardiotoxicity earlier in drug discovery. In the case of 5-HT2B, we report the first Shape
Signatures-SVM-based classification models, which exhibit average accuracies in the range
of 73−83%. These findings are comparable with the results of the SVM classification using
traditional 2D molecular descriptors available in the commercially available software MOE,
which was also performed in this study. Further research is currently underway in our
laboratories to examine the combination of Shape Signature histograms with traditional 2D
descriptors (such as from MOE) to assess whether this improves the models. For hERG, the
prediction accuracy is comparable with the results of alternative computational models
published to date. Altogether, our study demonstrates that the reported classification models
perform well in discriminating between hERG and 5-HT2B active and nonactive molecules
and could be applicable to other protein targets. We also note that, as with any molecular
descriptors and algorithms used for QSAR to date, it is important to understand the chemical
space covered in both the training and the test sets for optimal predictions (i.e., the applicable
prediction space). Our results certainly attest to the notion that molecular shape and polarity
are indeed key characteristics that regulate molecular activity toward specific protein targets.
Given the simplicity, physical transparency, and applicability of the Shape Signatures
representation, this method encodes these main features in a compact and practical form.
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Because the procedure obviates direct 3D molecular alignment or grid generation [as in
CoMFA and comparative molecular similarity analysis (CoMSIA) etc.], the algorithm is also
relatively fast and efficient. Models based on Shape Signatures histograms can therefore
accommodate structurally diverse compounds; once generated, they can be used for a variety
of tasks that require molecular recognition, and no model refitting is necessary in going from
one problem to another (Table 1). We are currently using Shape Signatures to aid in drug
discovery projects while also evaluating the Shape Signatures descriptors for other
physicochemical properties, as we believe this approach is generally applicable. Overall, we
conclude that the Shape Signatures method offers a novel practical approach to classifying
compounds with respect to their potential for cardiotoxicity. Further future studies will use
these 5-HT2B models for mining databases to identify additional compounds for in vitro testing
to prospectively validate them, a strategy that we have successfully undertaken for transporters
(79,80).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
One-dimensional (1D) and 2D shape signatures of pergolide, a 5-HT2B active (strong binder,
Ki = 14 nM). (a) Chemical structure. (b) 1D (shape only) signature histogram. (c) 2D (shape
and polarity) signature plot.
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Figure 2.
1D and 2D shape signatures of melatonin, a 5-HT2B nonactive (weak binder, Ki = 12900 nM).
(a) Chemical structure. (b) 1D (shape only) signature histogram. (c) 2D (shape and polarity)
signature plot.
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Figure 3.
Separate distribution of 5-HT2B active (a) and nonactive (b) compounds within the Kohonen
network (the best randomization). Darker intensities relate to more molecules in that area. The
data have been smoothed for presentation purposes.
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Figure 4.
Prediction accuracy for 5-HT2B active and nonactive compounds, from the training (a) and test
(b) sets used in the Kohonen network (SOM).
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Table 1
Comparison of Several Key Performance Measures for Traditional Descriptor-Based QSAR Approaches (1D, 2D, and
3D QSAR) vs Shape Signatures

asset traditional descriptor-based QSAR approaches Shape Signatures

speed ✓✓✓ ✓✓✓

accuracy ✓✓ ✓✓

scalability ✓ ✓✓✓

model requires reformulation as new data added no reformulation needed as new data added

coverage ✓ ✓✓✓

descriptors must be available for chemical species always works, i.e., organics, inorganics,
organometallics, ions, etc.

sensitivity ✓ ✓✓

global model, lacks sensitivity (can also be used for
local models)

local model, enhanced sensitivity

domain applicability ✓ ✓✓✓

model very sensitive to chemical (sub) structure of
training set

much less sensitive to chemical (sub) structure of
training set

interoperability ✓✓ ✓✓✓

integration with other QSAR models requires
reformulation

fully compatible with other methods

ease of use ✓✓ ✓✓✓

preprocessing of queries requires time and know-how no preprocessing, extremely simple to use
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